

General Information about Pico DSOs (Digital Storage Oscilloscopes)

© Copyright 2010, PSE- PRIGGEN SPECIAL ELECTRONIC

- What is the frequency of the signal you are trying to measure?
- How long do you want to look at the signal for?
- How many channels are you looking for?
- What is the amplitude of the signal you are trying to measure?
- How much detail do you want to get out of your amplitude?

- Four major points need to be considered for any DSO (Digital Storage Oscilloscope):
 - Analogue bandwidth
 - Sample rate
 - Memory (buffer length/ sample length)
 - Vertical resolution

- The maximum frequency that can pass through the front end of your oscilloscope
- To be specific, most scope manufacturers define this as the frequency at which a sine wave will be attenuated to 71% of its true amplitude (-3dB point)

Rules of thumb

- Analogue bandwidth frequency has to be higher than maximum frequency of signal you are measuring
- Note: when measuring square waves ensure the bandwidth of the scope is at least 3-5 times higher than the frequency of the square wave
 - Since a square wave is made up of higher frequency components (in fact a perfect square wave has infinite frequency components)

- Once the analogue signal has gone through the front end it needs to be sampled
- It depends on how many points are used to define the shape of the waveform
- This is usually measured in MS/s and/or GS/s
- The more points (samples) we use, the better a representation of the original waveform we obtain

Samples

7 Samples

15 Samples

- Interpolation is a method of modifying the acquired waveform by generating predicted samples between the acquired points (samples)
- This is a software interpretation of the sampled data
- Two methods are generally used:
 - Linear Interpolation (as shown in previous slides) this works in essence by connecting the dots
 - Sin(x)/x interpolation: based on the assumption that Nyquist's criterion is met, a signal can be constructed identically. This method is generally used by most scope manufacturers for DSOs (this is a feature in PicoScope 6)

Rule of thumb

Scope mode

- We need to sample at least 2.5 times quicker than the analogue signal when using Sin(x)/x interpolation
 - Or with Linear interpolation you would need at least 5 to 10 times the sample rate

Spectrum mode

Sampling has to be at least 2 times the rate of the measured signal

- Memory depth / buffer memory is an important concept in DSOs
- DSOs can capture samples in a buffer memory for a given sample rate, the size of the buffer determines how long it can capture a signal before the memory is full
- i.e. the bigger the memory the longer you can sustain high sample rates

Memory Depth in Comparison

- PicoScope 6403
 - Sample rate 5GS/s
 - Bandwidth 350 MHz
 - Memory 1GS
 - 20ms/div at 5GS/s

- 100,000 times longer than TDS3044B!
- Tektronix TDS3044B
 - Sample rate 5GS/s
 - Bandwidth 400MHz
 - Memory 10kS
 - 200ns/div at 5GS/s

- Defines the minimum change in voltage you can represent
- It is measured in bits
- We provide scopes that are 8 bits and 12 bits
- 8 bits is equivalent to 256 increments across your full range
- 12 bits is equivalent to 4096 increments across your full range

- Using Pico oscilloscopes we have up to 9 voltage ranges, from +/-50mV to +/-100V (product dependent)
- In each of those ranges you have the same number of bits
- So if for example we chose a +/-1V range using an 8 bit scope (256 steps) the smallest step would 7.8mV
- In a 12 bit scope (4096 steps) this would be $4.9\mu V$
- i.e. more bits gives more detail available in the vertical axis

Vertical Resolution

8 bits

12 bits

Frequency domain

- High resolution increases the dynamic range
- This can be useful in audio applications or any scenario where large and small voltages are important to assess in detail.

Bandwidth

- Max frequency that the scope can take in
- Sample rate
 - How well this waveform is represented
- Memory depth
 - How long can we look at this signal at a given sample rate
- Vertical resolution
 - How much detail can we get out of our voltage

PicoScope 6 Functions

- Oscilloscope
- Frequency spectrum view (FFT)
- Signal/Arbitrary Waveform Generator (AWG)
- Curve trace persistence
- High speed data logger (long time base)
- Serial decoding (CAN bus)
- XY- view

- 95% of screen dedicated to waveform display
- Familiar windows look and feel
- Instantly save as image
- Easily export data in a number of formats
- Automatic measurements with statistics
- Measurement rulers
- Advanced triggers
- Maths channels

Features (continued)

- Resolution enhancement
- Reference waveforms
- Probe wizard
- Zoom panning controls
- Waveform buffer (1000 screens)
- Over 1M spectrum bins
- Mask Testing (coming soon)
- Plus many more

• Pico products encompass a wide span of specifications:

• Analogue bandwidth

5 MHz to 350MHz

- Sample rate
 - 20MS/s to 5GS/s
- Buffer memory
 - 8kS to 1GS
- Vertical resolution
 - 8 bits to 12 bits
- Channels
 - 1 to 4 channels

Summary Table

Scope	BW (MHz)	SR (MS/s)	Buffer Memory	Chann el	Res (bits)	AWG	External Trigger	Adv' Triggers
2104	10	50	8k	1	8	Ν	N	Ν
2105	20	100	24k	1	8	Ν	Ν	Ν
2203	5	40	8k	2	8	Y	N	N
2204	10	100	8k	2	8	Y	N	Ν
2205	25	200	16k	2	8	Y	N	Υ
3204	50	50	256kS	2	8	Y	Y	Ν
3205	100	100	512kS	2	8	Y	Y	Ν
3206	200	200	1MS	2	8	Y	Y	Ν
3425	5	20	512kS	4	12	Ν	Ν	Υ
4224	20	80	32MS	2	12	N	Ν	Y
4424	20	80	32MS	4	12	Ν	N	Υ
4226	50	125	32 MS	2	12	Y	Y	Υ
4227	100	250	32 MS	2	12	Y	Υ	Υ
5203	250	1GS/s	32MS	2	8	Y	Υ	Υ
5204	250	1GS/s	128MS	2	8	Y	Υ	Υ
6402	350	5GS/s	32MS	4	8	Y	Y	Υ
6403	350	5GS/s	1GS	4	8	Y	Y	Υ

More Product Details...

Please feel free to visit our PSE online shop for further information about the Pico DSOs:

www.priggen.com

Thank You!

PSE- PRIGGEN SPECIAL ELECTRONIC

PC Hosted Instruments, DSOs, Data Loggers & Automotive Diagnostics Sellen 102a, 48565 Steinfurt/GERMANY Tel.: +49-2551/5770 * Fax: +49-2551/82422 E-mail: priggen@priggen.com Internet: www.priggen.com